Fast opposite weight learning rules with application in breast cancer diagnosis

نویسندگان

  • Fatemeh Saki
  • Amir Tahmasbi
  • Hamid Soltanian-Zadeh
  • Shahriar B. Shokouhi
چکیده

Classification of breast abnormalities such as masses is a challenging task for radiologists. Computer-aided Diagnosis (CADx) technology may enhance the performance of radiologists by assisting them in classifying patterns into benign and malignant categories. Although Neural Networks (NN) such as Multilayer Perceptron (MLP) have drawbacks, namely long training times, a considerable number of CADx systems employ NN-based classifiers. The reason being that they provide high accuracy when they are appropriately trained. In this paper, we introduce three novel learning rules called Opposite Weight Back Propagation per Pattern (OWBPP), Opposite Weight Back Propagation per Epoch (OWBPE), and Opposite Weight Back Propagation per Pattern in Initialization (OWBPI) to accelerate the training procedure of an MLP classifier. We then develop CADx systems for the diagnosis of breast masses employing the traditional Back Propagation (BP), OWBPP, OWBPE and OWBPI algorithms on MLP classifiers. We quantitatively analyze the accuracy and convergence rate of each system. The results suggest that the convergence rate of the proposed OWBPE algorithm is more than 4 times faster than that of the traditional BP. Moreover, the CADx systems which use OWBPE classifier on average yield an area under Receiver Operating Characteristic (ROC), i.e. Az, of 0.928, a False Negative Rate (FNR) of 9.9% and a False Positive Rate (FPR) of 11.94%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Possible Utilization of 68Ga-DOTATOC in Diagnosis of Adenocarcinoma Breast Cancer

Objective(s): Studies have indicated advantageous properties of [DOTA-DPhe1 , Tyr3 ] octreotide (DOTATOC) in tumor models and labeling with gallium. Breast cancer is the second leading cause of cancer mortality in women, and most of these cancers are often an adenocarcinoma. Due to the importance of target to non-target ratios in the efficacy of diagnosis, the pharmacokinetic of 68Ga-DOTATOC in...

متن کامل

A Novel Prediction on Breast Cancer from the Basis of Association rules and Neural Network

The use of machine learning tools in medical diagnosis is increasing gradually. This is mainly because the effectiveness of classification and recognition systems has improved in a great deal to help medical experts in diagnosing diseases. Such a disease is breast cancer, which is a very common type of cancer among woman. As the incidence of this disease has increased significantly in the recen...

متن کامل

Prediction of Breast Tumor Malignancy Using Neural Network and Whale Optimization Algorithms (WOA)

Introduction: Breast cancer is the most prevalent cause of cancer mortality among women. Early diagnosis of breast cancer gives patients greater survival time. The present study aims to provide an algorithm for more accurate prediction and more effective decision-making in the treatment of patients with breast cancer. Methods: The present study was applied, descriptive-analytical, based on the ...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers in biology and medicine

دوره 43 1  شماره 

صفحات  -

تاریخ انتشار 2013